If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5n^2+160-60n=0
a = 5; b = -60; c = +160;
Δ = b2-4ac
Δ = -602-4·5·160
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-20}{2*5}=\frac{40}{10} =4 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+20}{2*5}=\frac{80}{10} =8 $
| 5x/4+2=8x/23 | | F(x)=-6/x+9 | | 12-3x+42=2x-3x | | 5(4.2-2x)=11x | | 5.2x+4=1.2x-4 | | 17x+64=24x-6 | | 17x+64=24-6 | | 9x-4=8x-12 | | 37x+40=32+29x | | 4x+7=13x-5 | | 3/5x+4=2/5x+6 | | -61=-6(-7p+2)+7(2+3p) | | 4(2a-3)-7a=-13 | | 12-6k=-3(2k-4) | | 12-6j=-3(2j-4) | | -56=4(3x-2) | | 9x+2x-17x=43 | | -3=4t-7-4t | | 2.35x+1.256(7.3x-9.1)=-4.1x-4(-1.96+5.987x) | | -40=8-4m | | 2x-9(-3x+2)=-1x+2 | | 16=n/6+4 | | 5.5x+0=15.5 | | 1x+4(-8x+2)=1x-8 | | 7x-1=-9x-3 | | 5x-35=13x+85 | | 1x=7x+18 | | 2x+3/2-1/4=5 | | 100-2=3y | | 6x=54-30 | | 24=54+5y | | x+(0.03x)=149095.41 |